Calculating the free energy of association of transmembrane helices.

نویسندگان

  • Jinming Zhang
  • Themis Lazaridis
چکیده

A large number of experimental studies have been devoted to quantifying the interaction between transmembrane (TM) helices in detergent micelles and, more recently, in bilayers. Theoretical calculation of association free energy of TM helices would be useful for predicting the propensity of given sequences to oligomerize and for understanding the difference between association in micelles and in bilayers. In this article, the theoretical foundation for calculating the standard association free energy of TM helices is laid out and is applied to glycophorin A in both micelles and bilayers. The standard association free energy is decomposed into the effective energy, translational, rotational, and conformational entropy terms. The effective energy of association is obtained by molecular dynamics simulations in an implicit membrane model. The translational and rotational entropy of association is calculated from the probability distribution of the translational and rotational degrees of freedom obtained from the molecular dynamics simulations. The side-chain conformational entropy of association is estimated from the probability distribution obtained by rigid rotation of all side-chain dihedral angles. The calculated standard association free energy of glycophorin A in N-dodecylphosphocholine micelles is in good agreement with the experimental value. The translational entropy cost is larger, whereas the rotational entropy cost is smaller in bilayers than in micelles. The standard association free energy in 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers is calculated to be approximately 1.3 kcal/mol more favorable than in N-dodecylphosphocholine micelles, consistent with available experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the Lipid Environment in the Dimerization of Transmembrane Domains of Glycophorin A

An efficient computational approach is developed to quantify the free energy of a spontaneous association of the α-helices of proteins in the membrane environment. The approach is based on the numerical decomposition of the free energy profiles of the transmembrane (TM) helices into components corresponding to protein-protein, protein-lipid, and protein-water interactions. The method was tested...

متن کامل

The effect of point mutations on the free energy of transmembrane alpha-helix dimerization.

Glycophorin A forms homodimers through interaction of the single, helical transmembrane domains of the monomers. The dimers are stable in sodium dodecylsulfate (SDS), permitting a number of studies that have identified a critical motif of residues that mediates dimer formation. We have used analytical ultracentrifugation to measure the energy of dimerization in a non-denaturing detergent soluti...

متن کامل

Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations

The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynami...

متن کامل

E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices.

We have developed an empirical residue-based potential (E(z) potential) for protein insertion in lipid membranes. Propensities for occurrence as a function of depth in the bilayer were calculated for the individual amino acid types from their distribution in known structures of helical membrane proteins. The propensities were then fit to continuous curves and converted to a potential using a re...

متن کامل

Energetics and conformational pathways of functional rotation in the multidrug transporter AcrB

The multidrug transporter AcrB transports a broad range of drugs out of the cell by means of the proton-motive force. The asymmetric crystal structure of trimeric AcrB suggests a functionally rotating mechanism for drug transport. Despite various supportive forms of evidence from biochemical and simulation studies for this mechanism, the link between the functional rotation and proton transloca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 91 5  شماره 

صفحات  -

تاریخ انتشار 2006